90 research outputs found

    Beam Splitter for Spin Waves in Quantum Spin Network

    Full text link
    We theoretically design and analytically study a controllable beam splitter for the spin wave propagating in a star-shaped (e.g., a YY-shaped beam) spin network. Such a solid state beam splitter can display quantum interference and quantum entanglement by the well-aimed controls of interaction on nodes. It will enable an elementary interferometric device for scalable quantum information processing based on the solid system.Comment: 5 pages, 4 figures, derivation of formulae change

    Comment on ``Manipulating the frequency entangled states by an acoutic-optical modulator''

    Full text link
    A recent theoretical paper [1] proposes a scheme for entanglement swapping utilizing acousto-optic modulators without requiring a Bell-state measurement. In this comment, we show that the proposal is flawed and no entanglement swapping can occur without measurement.Comment: 6 pages, 2 figures submitted to Phys. Rev

    Spin correlated interferometry for polarized and unpolarized photons on a beam splitter

    Get PDF
    Spin interferometry of the 4th order for independent polarized as well as unpolarized photons arriving simultaneously at a beam splitter and exhibiting spin correlation while leaving it, is formulated and discussed in the quantum approach. Beam splitter is recognized as a source of genuine singlet photon states. Also, typical nonclassical beating between photons taking part in the interference of the 4th order is given a polarization dependent explanation.Comment: RevTeX, 19 pages, 1 ps figure, author web page at http://m3k.grad.hr/pavici

    DadaGP: A Dataset of Tokenized GuitarPro Songs for Sequence Models

    Get PDF
    Originating in the Renaissance and burgeoning in the digital era, tablatures are a commonly used music notation system which provides explicit representations of instrument fingerings rather than pitches. GuitarPro has established itself as a widely used tablature format and software enabling musicians to edit and share songs for musical practice, learning, and composition. In this work, we present DadaGP, a new symbolic music dataset comprising 26,181 song scores in the GuitarPro format covering 739 musical genres, along with an accompanying tokenized format well-suited for generative sequence models such as the Transformer. The tokenized format is inspired by event-based MIDI encodings, often used in symbolic music generation models. The dataset is released with an encoder/decoder which converts GuitarPro files to tokens and back. We present results of a use case in which DadaGP is used to train a Transformer-based model to generate new songs in GuitarPro format. We discuss other relevant use cases for the dataset (guitar-bass transcription, music style transfer and artist/genre classification) as well as ethical implications. DadaGP opens up the possibility to train GuitarPro score generators, fine-tune models on custom data, create new styles of music, AI-powered songwriting apps, and human-AI improvisation

    Violation of Bell's Inequality with Photons from Independent Sources

    Get PDF
    We report a violation of Bell's inequality using one photon from a parametric down-conversion source and a second photon from an attenuated laser beam. The two photons were entangled at a beam splitter using the post-selection technique of Shih and Alley [Phys. Rev. Lett. 61, 2921 (1988)]. A quantum interference pattern with a visibility of 91% was obtained using the photons from these independent sources, as compared with a visibility of 99.4% using two photons from a central parametric down-conversion source.Comment: 4 pages, 5 figures; minor change

    Demonstration of Controllable Temporal Distinguishability in a Three-Photon State

    Get PDF
    Multi-photon interference is at the heart of the recently proposed linear optical quantum computing scheme and plays an essential role in many protocols in quantum information. Indistinguishability is what leads to the effect of quantum interference. Optical interferometers such as Michaelson interferometer provide a measure for second-order coherence at one-photon level and Hong-Ou-Mandel interferometer was widely employed to describe two-photon entanglement and indistinguishability. However, there is not an effective way for a system of more than two photons. Recently, a new interferometric scheme was proposed to quantify the degree of multi-photon distinguishability. Here we report an experiment to implement the scheme for three-photon case. We are able to generate three photons with different degrees of temporal distinguishability and demonstrate how to characterize them by the visibility of three-photon interference. This method of quantitative description of multi-photon indistinguishability will have practical implications in the implementation of quantum information protocols

    Quantum interference with photon pairs created in spatially separated sources

    Full text link
    We report on a quantum interference experiment to probe the coherence between two photons coming from non degenerate photon pairs at telecom wavelength created in spatially separated sources. The two photons are mixed on a beam splitter and we observe a reduction of up to 84% in the coincidence count rate when the photons are made indistinguishable. This experiment constitutes an important step towards the realization of quantum teleportation and entanglement swapping with independent sources.Comment: 5 pages, 2 figures, changes according to referee's comments, discussions partly rewritte

    Experimental Demonstration of Five-photon Entanglement and Open-destination Teleportation

    Full text link
    Universal quantum error-correction requires the ability of manipulating entanglement of five or more particles. Although entanglement of three or four particles has been experimentally demonstrated and used to obtain the extreme contradiction between quantum mechanics and local realism, the realization of five-particle entanglement remains an experimental challenge. Meanwhile, a crucial experimental challenge in multi-party quantum communication and computation is the so-called open-destination teleportation. During open-destination teleportation, an unknown quantum state of a single particle is first teleported onto a N-particle coherent superposition to perform distributed quantum information processing. At a later stage this teleported state can be readout at any of the N particles for further applications by performing a projection measurement on the remaining N-1 particles. Here, we report a proof-of-principle demonstration of five-photon entanglement and open-destination teleportation. In the experiment, we use two entangled photon pairs to generate a four-photon entangled state, which is then combined with a single photon state to achieve the experimental goals. The methods developed in our experiment would have various applications e.g. in quantum secret sharing and measurement-based quantum computation.Comment: 19 pages, 4 figures, submitted for publication on 15 October, 200

    Delayed - Choice Entanglement - Swapping with Vacuum-One Photon Quantum States

    Full text link
    We report the experimental realization of a recently discovered quantum information protocol by Asher Peres implying an apparent non-local quantum mechanical retrodiction effect. The demonstration is carried out by applying a novel quantum optical method by which each singlet entangled state is physically implemented by a two-dimensional subspace of Fock states of a mode of the electromagnetic field, specifically the space spanned by the vacuum and the one photon state, along lines suggested recently by E. Knill et al., Nature 409, 46 (2001) and by M. Duan et al., Nature 414, 413 (2001). The successful implementation of the new technique is expected to play an important role in modern quantum information and communication and in EPR quantum non-locality studies

    Probabilistic Quantum Logic Operations Using Polarizing Beam Splitters

    Full text link
    It has previously been shown that probabilistic quantum logic operations can be performed using linear optical elements, additional photons (ancilla), and post-selection based on the output of single-photon detectors. Here we describe the operation of several quantum logic operations of an elementary nature, including a quantum parity check and a quantum encoder, and we show how they can be combined to implement a controlled-NOT (CNOT) gate. All of these gates can be constructed using polarizing beam splitters that completely transmit one state of polarization and totally reflect the orthogonal state of polarization, which allows a simple explanation of each operation. We also describe a polarizing beam splitter implementation of a CNOT gate that is closely analogous to the quantum teleportation technique previously suggested by Gottesman and Chuang [Nature 402, p.390 (1999)]. Finally, our approach has the interesting feature that it makes practical use of a quantum-eraser technique.Comment: 9 pages, RevTex; Submitted to Phys. Rev. A; additional references inlcude
    • …
    corecore